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The results are given of a computer calculation of the Navier-Stokes equations for the flow of a viscous
incompressible conducting fluid, arising when a flat laminar jet flows into a channel of finite width under the influence

of a magnetic field (for Ry, « 1).

The problem reduces to the following. A jet of fluid flows into a flat channel with a transverse dimension of
unity, through a slit whose width is one-tenth of the channel width. An external uniform magnetic field (the case of
small values of the magnetic Reynolds' number Ry, < 1) is in the direction transverse to the channel. The induced
currents are assumed to be short circuited through electrodes (the side walls of the channel). The initial velocity
profile is taken to be uniform (the value of the velocity at the entrance is equal to unity). In the calculations the
position of the slit on the end wall of the channel is varied relative to its axis, and the values of the Reynolds! number
R and Hartmann number H are also varied.

Concrete calculations (for R = 50) carried out for various values of the dimensionless distance of the slit axis
from the channel axis (¥ = 0,0.1,0.2, 0.3, 0.4, 0.45) and several values of the Reynolds' and Hartmann numbers.

The initial equations for nonsteady flow are
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Introducing the stream function u = ay/ay, v = — y/dz we obtain
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The equations are written in dimensionless form; the velocity and dimension scales are, respectively, the
velocity at the exit from the slit and the width of the slit under consideration.

In the finite-difference representation Egs. (1) have the form
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The finite-difference equations were solved on an electronic computer by the method employed in the papers of
Simuni* [1, 2].

The boundary conditions, for the functions ¥ and ¢ in finite-difference representation may be expressed as
follows.

The boundary contour consists of the three channel walls (with the slit on the end wall) and the normal plane to

*We wish to thank L. M. Simuni for advice and help in carrying out the present work.
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the channel axis downstream. The latter is chosen in the region of steady-state Hartmann flow. As usual in this case
the velocity vector is equal to zero for a viscous fluid at the solid walls, while the velocity profile within the limits of
the slit is uniform and varies in time according to the law V =1 — ekt (k is a constant). Finally, a Hartmann flow
velocity profile is assumed for the downstream boundary with a fluid flow rate varying with time. This profile was
found graphically from the solution of the finite-difference equations for uniform flow. These conditions specify the
distribution of the stream funection in time over the whole bounding contour.

The boundary conditions for the function ¢, in accordance with [1], are determined from the formula
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Here ¥y and ¢; are the values of the stream functions at the wall and in the adjacent (removed by one step) layer,
respectively.

Briefly the order of the calculations reduces to the following, The value of the function ¢i% is found via Eq. (2)
from the known values %}, and ¥7; for the preceding instant. The value ¥ is then found by integrating Eq. (3). The
calculations were continued until steady state flow was obtained.

As regards choice of step length we note that the calculations showed that a step of Ax = Ay = 5- 1073 was
sufficient. The time step length At and the constant k were chosen so as to ensure that the variation of the functions
was sufficiently smooth.

The results of one of the series of calculations is given in Fig. la—{ for the values R = 50, H = 0, which

corresponds to developed flow with circulatory zones in the corners of the channel. The solid lines on the figures
represent the streamlines while the velocity profiles at several transverse cross sections are given by the dashed

lines.
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Fig. 1

It is clear from the graphs that as the axis of the slit is displaced from the channel axis (Fig. 1a) in the
direction of the upper wall the lower vortex increases noticeably, while the upper vortex suifers a corresponding rapid
decrease {in Fig. 1d—f it is absent altogether).

Some data are given in Fig. 2 characterizing the intensity of the circulatory motion in the stagnation zones, in
the corners of the channel for various positions of the slit. The solid line shows the relative flow rate of fluid
circulating in the stagnation zone (Qy, the flow rate of fluid flowing into the channel through the slit is taken as the
scale). The dashed line shows the variation of the geometrical characteristics of the stagnation zone (the area bounded
by the zero or the maximum streamline) measured relative to an arbitrary unit area (a square with a side equal to the
channel width).
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These curves provide an additional visual illustration of the asymmetry of the flow, which is already clear from

Fig. 1.
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The flow picture for the values R = 200, H = 0 is given in Fig. 3a for a symmetrical slit position. In this case
(compared with flow for R = 50) the relative dimensions of the stagnation zones and the intensity of the circulation in
them increase equally. For small values of R (roughly up to R = 20) the stagnation zones are absent, and the flow

around the corners is almost smooth.
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Fig. 3

Let us see how this picture changes under the influence of an applied transverse magnetic field. Applying a
transverse magnetic field decreases the dimensions and intensity of the circulatory zones, until they disappear
completely. In all cases (symmetric or asymmetric flow) this effect is more strongly marked for larger values of the

Hartmann number and smaller values of the Reynolds' number.
As an example Fig. 1c and Fig. 3b, ¢ show the streamlines for the case of asymmetric slit position. The

data given in Fig. lc¢ and Fig. 3b,c, refer to R = 50 and values of H = 0.10 and 50. It is clear that the lesser
circulatory zone is damped at first (in the upper corner of the channel in Fig. 3b), and subsequently as the number H

increases further the lower zone also disappears.

Thus the transverse field which retards the flow leads to a decrease of reverse flow in the corners of the
channel, and eventually to smooth motion without detachment. As opposed to this a longitudinal field increases the
circulatory zones but a noticeable effect is observed for considerably larger values of the Hartmann number.

These effects should be preserved qualitatively for turbulent motion. On the whole the data obtained enables us
to construct an intuitive kinematic picture of the flow under consideration. Without going into details we note that the
formation of stagnation and circulatory zones in the corners of the channel (which remain for turbulent flow) and the
possibility of influencing them actively have an important significance for some applications, such as the stabilization

of flames, etc.
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